Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties
نویسندگان
چکیده
Algorithms for estimating dry snow density and the dielectric constant and roughness of the underlying soil or rock use backscattering measurements with VV and HH polarization at L-band frequency (1.25 GHz). Comparison with field measurements of snow density during the first SIR-C/X-SAR overpass shows absolute accuracy of 42 kg m 3 (13% relative error). For the underlying soil, comparisons with the ground scatterometer measurements showed errors of 4% by volume for soil moisture estimation and 4 mm for the surface root mean square (RMS) height. Values of snow density and the properties of the underlying soil are necessary for the estimation of snow water equivalence.
منابع مشابه
Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size
The relationship between snow water equivalence (SWE) and SAR backscattering coefficients at Cand X-band (5.5 and 9.6 GHz) can be either positive or negative. Therefore, discovery of the relationship with an empirical approach is unrealistic. Instead, we estimate snow depth and particle size using SIR-C/X-SAR imagery from a physically-based first order backscattering model through analyses of t...
متن کاملOn Estimation of snow water equivalence using SIR-C/X-SAR
Snow water equivalence, which is the product of snow density and depth, is the most important parameter in snow hydrology. This paper demonstrates the algorithms for estimating dry snow density, depth, grain size, underground dielectric constant and surface RMS height using multi-frequency and –polarization SAR (SIR-C/X-SAR) measurements. The algorithms were developed based on the numerically s...
متن کاملSar Backscatter Inversion Model for Estimation of Snow Properties
This paper presents an inverse model for SAR backscatter X band designed to snow and ice surfaces. The model inversion enables estimating the morphological characteristics of snow cover from SAR data. X Cosmo-Skymed sensor data was used in the experiment tested here for the region of Union Glacier Antarctica. We observed a precision in determining the estimated size of snow grains about 94%. Th...
متن کاملFeasibility of Envisat Data for the Estimation of Snow Pack Characteristics and Areal Fraction of Snow in Boreal Forests
Estimation of snow moisture (total liquid water content) and the fraction of snow covered area (SCA) is investigated by applying multi-year ERS-2 SAR and Envisat ASAR data sets. Additionally, the feasibility of Envisat MERIS for the operative monitoring of SCA in boreal forests is discussed and analysed. An inversion approach for the moisture retrieval from SAR data is introduced. The results c...
متن کاملمحاسبه تغییرات نقشههای پوشش برفی تهیه شده از تصاویر ماهوارهای MODIS در دورههای فاقد تصویر
Snow is a huge water resource in most parts of the world. Snow water equivalent supplies 1/3 of the water requirement for farming and irrigation throughout the world. Water content estimation of a snow-cover or estimation of snowmelt runoff is necessary for Hydrologists. Several snowmelt-forecasting models have been suggested, most of which require continuous monitoring of snow-cover. Today mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 38 شماره
صفحات -
تاریخ انتشار 2000